Wednesday 2 July 2014

Windows Presentation Foundation (or WPF)

Windows Presentation Foundation (or WPF) is a graphical subsystem for rendering user interfaces in Windows-based applications by Microsoft. WPF, previously known as "Avalon", was initially released as part of .NET Framework 3.0. Rather than relying on the older GDI subsystem, WPF uses DirectX. WPF attempts to provide a consistent programming model for building applications and separates the user interface from business logic. It resembles similar XML-oriented object models, such as those implemented in XUL and SVG.
WPF employs XAML, an XML-based language, to define and link various interface elements.[1] WPF applications can also be deployed as standalone desktop programs, or hosted as an embedded object in a website. WPF aims to unify a number of common user interface elements, such as 2D/3D rendering, fixed and adaptive documentstypographyvector graphics, runtime animation, and pre-rendered media. These elements can then be linked and manipulated based on various events, user interactions, and data bindings.
WPF runtime libraries are included with all versions of Microsoft Windows since Windows Vista and Windows Server 2008. Users of Windows XP SP2/SP3 and Windows Server 2003 can optionally install the necessary libraries.[2][3]
Microsoft Silverlight provides functionality that is mostly a subset of WPF to provide embedded web controls comparable to Adobe Flash. 3D runtime rendering has been supported in Silverlight since Silverlight 5.




XAML

Following the success of markup languages for web development, WPF introduces eXtensible Application Markup Language (XAML), which is based on XML. XAML is designed as a more efficient method of developing application user interfaces.
The specific advantage that XAML brings to WPF is that XAML is a completely declarative language, allowing the developer (or designer) to describe the behavior and integration of components without the use of procedural programming. Although it is rare that an entire application will be built completely in XAML, the introduction of XAML allows application designers to more effectively contribute to the application development cycle. Using XAML to develop user interfaces also allows for separation of model and view, which is considered a good architectural principle. In XAML, elements and attributes map to classes and properties in the underlying APIs.
As in web development, both layouts and specific themes are well suited to markup, but XAML is not required for either. Indeed, all elements of WPF may be coded in a .NETlanguage (C#VB.NET). The XAML code can ultimately be compiled into a managed assembly in the same way all .NET languages are.

Architecture

The architecture of WPF spans across both managed code and native code components. However, the public API exposed is only available via managed code. While the majority of WPF is in managed code, the composition engine which renders the WPF applications is a native component. It is named Media Integration Layer (MIL) and resides in milcore.dll. It interfaces directly with DirectX and provides basic support for 2D and 3D surfaces, timer-controlled manipulation of contents of a surface with a view to exposing animation constructs at a higher level, and compositing the individual elements of a WPF application into a final 3D "scene" that represents the UI of the application and renders it to the screen.[16][17] The media codecs are also implemented in unmanaged code, and are shipped aswindowscodecs.dll. In the managed world, PresentationCore (presentationcore.dll) provides a managed wrapper for MIL and implements the core services for WPF,[16] including a property system that is aware of the dependencies between the setters and consumers of the property, a message dispatching system by means of a Dispatcher object to implement a specialized event system and services which can implement a layout system such as measurement for UI elements. PresentationFramework (presentationframework.dll) implements the end-user presentational features, including layouts, time-dependent, story-board based animations, and data binding.
WPF exposes a property system for objects which inherit from DependencyObject, that is aware of the dependencies between the consumers of the property, and can trigger actions based on changes in properties. Properties can be either hard coded values or expressions, which are specific expressions that evaluate to a result. In the initial release, however, the set of expressions supported is closed. The value of the properties can be inherited from parent objects as well. WPF properties support change notifications, which invoke bound behaviors whenever some property of some element is changed. Custom behaviors can be used to propagate a property change notification across a set of WPF objects. This is used by the layout system to trigger a recalculation of the layout on property-changes, thus exposing adeclarative programming style for WPF, whereby almost everything, from setting colors and positions to animating elements can be achieved by setting properties. This allows WPF applications to be written in XAML, which is a declarative mark-up language, by binding the keywords and attributes directly to WPF classes and properties.
The interface elements of a WPF application are maintained as a class of Visual objects. Visual objects provide a managed interface to a composition tree which is maintained by Media Integration Layer (MIL). Each element of WPF creates and adds one or more composition nodes to the tree. The composition nodes contain rendering instructions, such as clipping and transformation instructions, along with other visual attributes. Thus the entire application is represented as a collection of composition nodes, which are stored in a buffer in the system memory. Periodically, MIL walks the tree and executes the rendering instructions in each node, thus compositing each element on to a DirectX surface, which is then rendered on screen. MIL uses the painter's algorithm, where all the components are rendered from back of the screen to the front, which allows complex effects like transparencies to be easily achieved. This rendering process is hardware accelerated using the GPU. The composition tree is cached by MIL, creating a retained mode graphics, so that any changes to the composition tree needs only to be incrementally communicated to MIL. This also frees the applications of managing repainting the screen; MIL can do that itself as it has all the information necessary. Animations can be implemented as time-triggered changes to the composition tree. On the user visible side, animations are specified declaratively, by setting some animation effect to some element via a property and specifying the duration. The code-behind updates the specific nodes of the tree, via Visual objects, to represent both the intermediate states at specified time intervals as well as the final state of the element. MIL will render the changes to the element automatically.
All WPF applications start with two threads: one for managing the UI and another background thread for handling rendering and repainting.Rendering and repainting is managed by WPF itself, without any developer intervention. The UI thread houses the Dispatcher (via an instance of DispatcherObject), which maintains a queue of UI operations that need to be performed (as a tree of Visual objects), sorted by priority. UI events, including changing a property that affects the layout, and user interaction events raised are queued up in the dispatcher, which invokes the handlers for the events. Microsoft recommends that the event handlers only update the properties to reflect new content for application responsiveness; the new content be generated or retrieved in a background thread.[18] The render thread picks up a copy of the visual tree and walks the tree calculating which components will be visible and renders them to Direct3D surfaces. The render thread also caches the visual tree, so only changes to the tree need to be communicated, which will result in updating only the changed pixels. WPF supports an extensible layout model. Layout is divided into two phases: Measure and Arrange. The Measure phase recursively calls all elements and determines the size they will take. In the Arrange phase, the child elements are recursively arranged by their parents, invoking the layout algorithm of the layout module in use.


No comments:

Post a Comment

SAP HANA DB ANALYSIS AFTER ISSUES

To be able to further analyze your issue and environment please download the attached shell script you can get from KBA: 3218277 - Collectin...